If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2=480
We move all terms to the left:
10x^2-(480)=0
a = 10; b = 0; c = -480;
Δ = b2-4ac
Δ = 02-4·10·(-480)
Δ = 19200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{19200}=\sqrt{6400*3}=\sqrt{6400}*\sqrt{3}=80\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80\sqrt{3}}{2*10}=\frac{0-80\sqrt{3}}{20} =-\frac{80\sqrt{3}}{20} =-4\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80\sqrt{3}}{2*10}=\frac{0+80\sqrt{3}}{20} =\frac{80\sqrt{3}}{20} =4\sqrt{3} $
| 7/10=3/x+1= | | 0=x/2+10 | | s=20/15 | | 3n+6-2n=n+3 | | 5b-1=6b-5 | | (x+2)^2+17(x+2)+17=0 | | 2x+2=6x+42 | | 6x+18x-7=6(4x+6) | | 12+4P+7=19+4p | | -8-3/4(-8x-12)=-3/2(6x-12) | | 7x-23+3x=49 | | -15-n=3n+41 | | 10x+6=2x+11 | | 5+k/10=4 | | 5y-50+4y-10=180 | | 2-2y=y+2 | | x+3.75=11.333 | | 7m-4m=-6 | | x+3÷2=15 | | 6c=4c-42 | | 64v^2-4=0 | | 2a^-½=-14 | | 20=3m+5 | | 9x-21=6x-9 | | 3x+10=3x-1 | | 6-x=3/4 | | 3x+8(2x+3)=-6(2x+5) | | |4t-8|=20 | | 12x^2-72x=-56 | | -5+x/3=-5 | | 3x^2+25x+5=0 | | 9x+21=6x-9 |